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GLOSSARY
= Normalized damage fraction per thermal cycle (of motor or SEC)
multiplied by a constant, min./cycle

= Normalized damage fraction in failure testing of tensile
specimen, dimensionless

= Inside radius of case-bonded grain, cm
= Time-temperature shift factor, dimensionless

= Negative reciprocal of the slope of log true stress versus log
time-to-failure, dimensionless

= Qutside radius of case-bonded grain, cm

= Qutside diameter of case-bonded grain, cm

= Tensile relaxation modulus at one minute at 25°C, MPa
= Tensile relaxation modulus, MPa

= Equilibrium tensile relaxation modulus, MPa

= Effective biaxial tensile modulus at the inner bore of a grain, MP,

An empirical constant in the relation for ar, A

An empirical constant in the relation for a;, >

it

An empirical constant related to the reduction in grain inner-
bore strain due to propellant strain dilatation, dimensionless

Length of case~bonded grain, cm

= Number of thermal cycles to failure at the inner-bore of a case
bonded grain, cycles

= Mean or average number of cycles to failure in logarithmic
distribution, cycles

= Geometric average number of thermal cycles to failure, cycles

= An empirical constant that accounts for strain softening of the
propellant and for moduli gradients within the grain, dimensionless

= Ratio of log ay at -40°C to log ap at 60°C
t = Time in relaxation, min.

Time to o, in constant rate tensile test, min.
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GLOSSARY (Cont.)

tf = Time-to-failure under constantly applied stress, min.
tfe = Equivalent time-to-failure at a constant stress, derived from
constant rate tensile data, min. ;
i T = The lower temperature limit in the thermal cycling of the test ﬁ
° :
motor, °C 1
TSF = Grain strain-free temperature, °C ?
T = The upper temperature 1imit in the thermal cycling of the test ?
u ° {
motor, °C 2
{
v = The elastic component of the effective biaxial tensile modulus f
at the grain inner-bore, MPa E
W = The viscoelastic component of the effective biaxial tensile i
modulus at the grain inner-bore, MPa i
wf = Web fraction of the case-bonded grain, dimensionless !
| er = An effective web fraction for grain with non-circular bore
' perforation, dimensionless
a. = Thermal coefficient of linear expansion of case material,
cm/cm/K
o = Thermal coefficient of linear expansion of propellant,
cm/cm/K f
€ = Strain in constant rate tensile test, cm/cm E,
) = Calculated inner-bore hoop strain for a motor, cm/cm %
(Calculated) &
|
b = Measured inner-bore hoop strain in a test motor, cm/cm 1
(Measured) j
A = Elongation ratio in constant rate tensile test, dimensionless - ]
o = Engineering stress in constant rate tensile test, MPa h
% = The constantly applied true stress that produces failure at
one minute at a test temperature of 25°C, MPa g
o = True stress in constant rate tensile test, MPa i
Oem * Maximum true stress in constant rate tensile test, MPa
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SECTION 1

INTRODUCTION

\SThe Structural Design Nomograph (SDN) is an analytical levice
for predicting the conditions for failure of tactical rocket propellant
grains. The nomograph discussed in this handbook considers these
failures to be the result of repeated thermal cycling (under conditions
where stress-ratcheting is prevented). The most practical use of the
SDN is as a preliminary design tool that permits rapid and inexpensive
calculations by both chemists and engineers, from which they can assess
the effects of design changes and variations in propellant mechanical
properties. These analyses are relatively inexpensive since they can
be performed about 20 to 50 times faster than the input time to the
computer for the corresponding viscoelastic analyses. Also, no mathe-
matical talents are required to conduct the nomographic analyses. They
can be performed by non-engineering, non-mathematical personnel.

The nomographic analysis involves approximations to the highly
sophisticated, linear, thermo-viscoelastic stress and damage analyses. —
Although this analysis is an approximation, it has a major advantage
over the computer analyses. The nomograph contains two empirical cor-
rection terms that account for real behaviors of solid propellant grains.
These corrections account for strain dilatation (an increase in material
volume as the propellant is stretched) and the associated softening of
the propellant (as it becomes more spongy with strain).

The nomograph utilizes 11 independent design, test, and material
property variables, plus the two empirical correction terms described
above. This comes to a total of 13 independent parameters. This number
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was obtained after specifying the case and grain density and thermal
properties which were held constant, as were the case mechanical
properties. The predictive method specifically accounts for cycling
temperature limits, propellant tensile strength, relaxation modulus
and ay, the grain dimensions, inner-bore hoop strain and web fraction,
plus the two empirical corrections mentioned above.

To simplify the motor testing, the SDN was built around a
thermal cycling schedule with 24 hours at each storage temperature
(a 48 hour thermal cycle). After two complete thermal cycles the motor
is allowed to recover for three days at the upper storage temperature.
This recovery step is required to reverse the stress ratcheting effect
(grain stresses increasing from one cycle to the next) that occurs in
most solid propellant grains. It is recognized that by this plan the
larger motors (above 18 cm diameter) do not reach thermal equilibrium
at the storage temperatures.

The layout of the nomograph requires six charts. This large
number is required because of the complexity of the problem. The
first four charts provide the determinations for the effective biaxial
modulus. Chart one gives the elastic component of the modulus, while
charts two and three together yield the viscoelastic component of the
effective modulus. Chart four combines the two terms and accounts for
the effects of thermal lag upon the inner-bore hoop strain. Chart five
provides a simplified damage analysis procedure. The sixth chart pro-
vides the calculations and is a good summary of the overall problem.
This chart is particularly useful in evaluating the effects of hypo-
thesized variations in one or more of the independent variables.
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The following three sections are designed to be a guide to the
use of the nomograph. Section 2 defines the parameters required by
the SDN, the minimum number of laboratory tests to obtain them, and
how the parameters are obtained from laboratory data. Section 3 provides
an example set of calculations on a real propellant. In the final section
(Section 4) the nomographic predictions are assessed in terms of the
nature and statistics of solid propellant failures.
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‘ SECTION 2 i
PARAMETERS

The purpose of this section is to define the parameters of the E
nomographic analysis and, where appropriate, how they may be obtained. d
This begins with a summary of the testing constraints imposed upon the
motor and a tabulation of the fixed parameters used in the SDN analysis.

A. CONSTRAINTS

A1l motor, or strain evaluation cylinder, testing must follow the
thermal cycling test schedule given below for the nomograph to apply.
The nomograph assumes circulating air ovens.

Two Thermal Cycles He— Recovery _—-_-l
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This plan produces only two thermal cycles per week, with 24 hours
at the low temperature in each cycle. Of course, the days of the week
when these two cycles occur are completely arbitrary.




The long recovery time (three days) at the high temperature is
required to anneal any possible stress-ratcheting effect that might
occur. Stress-ratcheting is an effect observed in solid propellants
where the grain stresses increase significantly from one thermal cycle
to the next (Reference 1). Experience has shown that this stress-
ratcheting effect is readily annealed upon storage for a short time
at high temperatures. This observation was the basis for the recovery
period allowed after every second thermal cycle.

Because of the very strong effects of condensed water upon
propellant surface failures, care must be taken to prevent frost from
forming on the bore surface at low test temperatures, even while
inspecting the motor for inner-bore cracking.

B. FIXED PARAMETERS USED IN THE NOMOGRAPH

A number of propellant and case parameters were fixed in the SDN
analyses. These fixed parameters are considered to be typical of those
of most of the tactical rocket motors and strain evaluation cylinders
in use today. These fixed parameters are given in Table 1.

C. USER DATA NEEDS

The data required to conduct the nomographic analysis are tabulated
and simply defined in Table 2. Four parameter types are listed, thermal
environment, grain design, material properties, and empirical grain response
data.

In addition to the definitions, this table also serves as an input
data sheet for the nomographic analysis. The nomographs require SI units.
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NWC T™ 3365

D. PARAMETERS AND OBTAINING THEM

The parameters are discussed under the four major headings given
in Table 2.

1. Thermal Environment, TU and TL
The motor is to be cycled between two temperatures, with TU

as the upper limit and TL as the lower 1imit. The nomographic analysis

assumes the motor thermal cycling to begin at TU and to be in thermal

equilibrium at that temperature. The motor is then shock cycled to

the lower temperature limit, TL’ where it is held for 24 hours, then

taken back to TU for 24 hours, and so forth.

The values of TU and TL are to be established by the experimenter.

2. Grain Design

The grain design parameters are obtainable from two different
sources: (1) from engineering drawings or reports; and (2) from direct
measurements on the grain. The former source is required in the case of
actual tactical motors with non-circular bore perforations. The latter
measurements are normally all that is available for laboratory tests using
SEC's. Recognizing the availability of engineering data in the first case
and the need for it in the second, the following definitions are limited to
those for the circularly perforated grain.

bl £ i B by et . b 8 8 ot o A b R B8 b el B o 15 s . e
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a. Grain Dimensions: a, b, Dand L

Figure 1 provides a schematic of the grain, which is assumed
to be case bonded. Here, a and b are the inside and outside radii of the
grain, respectively, while L is its overall length. The outside diameter of
the grain is given simply as

" D=2b (1)
b. Web Fraction, We
¢ For the circularly perforated grain the web fraction is
obtainable directly from the grain dimensions according to the following
relation
¢ 3
o l')B'il (2)
For non-circular bore perforations, the definition of a
: is modified to that shown in Figure 2. The effective web fraction, Weas
g e in the star-perforated grain was studied by Fourney and Parmerter
(Reference 2). They found that the propellant lying inward from the
star tips contributed 1ittle to the grain stiffness, so the effective
web fraction is only slightly larger than that given by Equation (2).
. The relation they derived could be approximated by the following equation.
Wee = 0.949 we + 0.051 (3)
L

Where we is obtained using Equation (2), with the values of a and b taken

as shown in Figure 2.

e AR S A S ST 8 Y e 48
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Figure 1. Base Dimensions to be Taken from Circularly
Perforated Grain ,




NWC TM 3365

Figure 2. Base Dimensions of the Star-Perforated Grain
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c. Calculated Inner-Bore Hoop Strain, €, (calculated)

The calculated inner-bore hoop strain for a circularly
perforated grain depends upon four primary factors:

(1) The L/D ratio

(2) The web fraction, we

(3) The temperature difference, AT

(4) The thermal coefficient of linear expansion difference, Aa

Figure 3 takes account of these parameters as a series of plots of ee/(AT Aa)
versus we at various L/D ratios.

To obtain e,/(AT aa), Figure 3 is entered at the appropriate
level of Wes then a line is projected upward to the curve for the given L/D
ratio, and the desired strain-temperature-expansion difference ratio is read
directly. The value of ¢ (calculated) is obtained from this ratio using

the following relation.

€ (calculated) = (ap - ac) (TSF-TL) [c.e/(AT Aa)] (4)

where
TSF is the strain-free temperature for the grain, °C.

ag is the thermal coefficient of linear expansion of the
case material, cm/cm/K

ap is the thermal coefficient of linear expansion of the
propellant, cm/cm/K

-12-
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A sample calculation using this graph is given in
Section 3.

3. Material Properties

a. Tensile Parameters B, % and As

These parameters are obtained from constant rate
tensile measurements. They are to be obtained in the course of making
the ar determinations. The minimum number of tests required to define
the parameters are tabulated below. Additional tests may be added as
required to cover the range of motor test temperatures, or to better
define the ar curve. —

Test Temperatures, °C

Crosshead Rates, cm/sec -40 <30 =15 5 & 40 60
8.47 x 10 (20 in./min.) X X
8.47 x 1072 (2 in./min.) X X foiinuyt s s iy

8.47 x 1073 (0.2 in./min.) X

X indicates tensile test to be performed in duplicate

The raw tensile data are reduced a little differently
from the conventional approach in that true stress values are used.

The true stress, oy, is related to the engineering
stress, o, by the relation

ot & ¢ (5)

where
A= ] +¢ (6)

where

¢ is the tensile strain that corresponds
to the given o.

-15-
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The time to failure, te, is defined as the time that would be
required to fail the specimen under a constantly applied true stress. It is

related to the time to maximum true stress, ttm' by the relation
te = tinfs (7)
]
where (0 )B
Ag = | ——t-g d (t/ty,) (8)
(qu)

The exponent B is obtained from a preliminary plot of
log Oty VS log tumat 25°C. This exponent is the negative reciprocal of
the slope of the l1ine defined by these data. Taking two points on the
line (identified by subscripts 1 and 2) yields the following relation
for calculating B.

109 (ty,/ty))
109 T"tmlfotmz)

(9)

After the values of te have been estimated, separate
plots of log oy, versus log te will be made for each test temperature.
These data will be superposed to fit a straight line and to define the
time-temperature shift parameter ar (referred to 25°C), an example of
which is given in Figure 4. This experimental value of ay must be
characterized further before it can be used in the nomograph (see below).

The shifted curve is used to obtain both B and 99
The relation for calculating B is the same as Equation (9), but using
tf data.

10g (teo/tey)
log (o, /o

) (10)

tm " tmp

The quantity % is the true stress at failure at one
minute, as taken from the plot of log Ogp VS log tf/aT.

Example determinations of B and 0, are given in
Section 3.

-16-
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b. Time-Temperature Shift Factor, ar

After ay has been derived from the tensile data (see above)
it must be reduced further to obtain those parameters that are required by
the nomograph. The required parameters, f] and f2, are those that charac-
terize the relationship between log ar and the test temperature.

The classical WLF equation for a; (Reference 3) was rewritten
to put it in a form that is more compatible with the experimental determina-
tions of ar. The new equation, which has a fixed reference temperature of
25°C, is the following:

1 1
loga, = f =
¥ 1 (fz G B 23) (11)

where T is the test temperature in °C

f] and f2 are constants

Equation (11) is a more versatile relation for use where
the reference temperature is unknown or where the data fall outside the
limits of applicability of the WLF equation. In general, solid propeliant
data fall far off the WLF curves, even allowing for large testing errors.
Therefore, the more versatile Equation (11) is preferred.

The empirical derivations of ar show that it depends
upon the testing technique used. Since the primary objective of the
nomographs is to predict failures, it was decided to use tensile failure
data as the basis for the a; determinations. These failure data, as
described below, are reduced to plots of l1og maximum true stress versus
log time-to-failure, which usually yield straight lines and greatly
simplify the a; determinations.

-18-
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The range of test temperatures muct exceed that of the
required analyses by at least 10°C and, in any event, must include de-
I terminations at -40°C and +60°C.

The values of f] and f2 are obtained nomographically
using Figures 5 and 6. The parameter f2 is determined first. This

} begins with the ratio, R, of the logs of ar at -40 and +60°C.
log a, (-40°C)
- 1 (12)
log ar (+60°C)
)
The quantity f2 is determined directly upon entering Figure 5 at the
given value of R.
b After f2 is determined, the parameter f] may be conven-

iently determined using Figure 6. The scale is entered at the value of
log ar at -40°C, which is projected upward to the curve corresponding to
the given fas then f] is read directly.

The values of f] and f2 obtained in this way may lead to
poor curve fits (of log a; versus temperature) at the intermediate temper-
atures. This results from the accumulation of errors in the superposition
process. It is essential, therefore, that the ar determinations be con-
ducted with great care.

Examples of the determinations of f] and f2 are given in
Section 3.

-19-
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c. Determinations of E(1) and E,

These are relaxation moduli. The modulus E(1) is the
most conveniently handled, since it is the tensile relaxation modulus
(at 2% tensile strain) at one minute at a test temperature of 25°C.

The equilibrium modulus, Ee’ must be approximated since
there is no convenient way to obtain it experimentally. Since this
parameter is being used for tests where the responses do not continue
for very long time, then a modulus determination in the reduced time

range of 105 minutes should suffice for the analytical objectives. That
is, the following approximation will be made

5

E, N E (a-% = 10" min.) (13)

and this is to be done by stress relaxation testing for 50 hours at 60°C.

4. Empirical Grain Response Data
a. Kand g (measured)

The measured bore strains in a grain are sometimes well
below those calculated for it. Figure 7 illustrates such a behavior
for a set of ten motors with 12.7 cm diameter grains. This deviation
is attributed to large volume changes in the propellant due to strain
dilatation. The parameter K provides a measure of that behavior which
would hold for motors of various sizes.

The determination of K will usually involve strain
evaluation cylinders (SEC) cooled to thermal equilibrium at a selected
temperature. Using the arain dimensions, together with Figure 3, per-
mits the calculation of ¢, (calculated). Measurement of the inner-bore
hoop strain in the SEC give €9 (measured). These strain quantities are
analyzed according to Chart 6 Sub-calculation I, which gives K directly.
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NWC ™ 3365
A sample calculation of K is given in Section 3.

When making the nomographic predictions of the mean number
of thermal cycles to failure, N, a value of K may not be available.

For these cases the value of K is assumed to be zero, which is noted
in the prediction by the following notation: N (K ¥ 0).

b. Empirical Determination of q

The relaxation modulus taken in the laboratory does
not reflect the true situation in the grain. This modulus is highly
dependent upon the strain level. So, its application can lead to stress
predictions that are too high or too low, as the effective strain levels
are lower or higher than those used in the laboratory in making the
modulus determinations.

In practice, the inner-bore of the grain is highly
strained and the bore hoop stresses depend only upon the local moduli,
which are lower than predicted because of the large strains.

The stresses at the case-to-grain bondline reflect the
average moduli across the web, the major portion of which experiences
only very small strains. Thus, the bondline stresses are expected to
be larger than those that would be predicted from laboratory modulus
measurements.

Recognizing this limitation in the modulus determina-
tions, an empirical correction to the nomographic analysis was made.
This correction uses failure data from a set of at least three SEC
motor tests (of a given motor size and design). The required param-
eter is the geometric mean number of cycles to failure, Ng. which is
given by the relation

-24-
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1/n
n
N =| T N 14
9 [1-1"‘} G

where n is the total number of tested motors and m means "product from
rultiplying each observed number of cycles".

The SEC design parameters, material properties and
thermal environments, together with Ng are analyzed according to Chart 6
Sub-calculation II. This analysis yields the required value of q.

A sample calculation of q is given in Section 3.

When making the nomographic predictions of the mean number
of thermal cycles to failure, N, a value of q may not be available.
For those cases the value of q is assumed to be zero, which is noted
in the prediction by the notation: N (q % 0).
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SECTION 3

ACTUAL USE OF NOMOGRAPH

The nomograph itself consists of six charts, which will be used
in the order given. Chart 2 is omitted if the motor radius is less than
9 cm (18 cm diameter). Also, chart 4 may be omitted when an additional
factor of error of about 1.25 can be tolerated; as would be the case when
evaluating the effects of material property variations.

Actually, the number of cycles to failure, N, in real motors
follows a statistical distribution that is based upon the logarithm of N. ,
Thus, by experience, a factor of error of two is often acceptable for ?
preliminary assessments.

Example calculations using the nomograph are given below. These 3
calculations are centered upon Sub-calculations I and II of chart 6, but

they illustrate all of the steps that are to be followed in the use of
the nomograph.

The example calculations involve RV-7 propellant in strain evaluation |
cylinders (SECs) that are 50.2 cm long with an I.D. of 1.91 cm and an 0.D
of 12.7 cm and thermally cycled between 60°C and -40°C. The propellant was :
cured at 57°C and has a strain-free temperature of 65.6°C. |

The two subsections which follow summarize these calculations. The
first sub-section summarizes the collection of the required design, test,
and material property data that are required by the nomographic analyses. The
last sub-section provides the example calculations using the nomograph.

-26-
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A. INPUT DATA g

The required design, test, and material property data are summarized
< in Table 3. This table is the filled-in version of Table 2. Some of the
required input data are obtained directly from the given parameters, but
a few must be derived. The derived properties are discussed further below. i

1. ey(calculated)
The web fraction for this motor, according to Equation (23 is

_ 6.35 - 0.953 _
Nf -Tss-—— 0.85

The L/D ratio is

X e

The value of ce/(AT Aa) is obtained for this motor as illustrated
in Figure 8, on entering at Wg = 0.85 and L/D = 4. This yields a value of
41.5 for co/(AT Aa). The value of eo(calculated) is obtained from this
quantity using Equation (4), which becomes

o (calculated) = (9.72 x 10°% - 10.62 x 1075)(65.6 +40) x 41.5
ce(calcu1ated) = 0.379

!
¢ 2. Tensile Parameters o, » B and Ag ?
f

The constant rate tensile data were reduced according to Equa- :
tions (5) to (9) and yielded the tabulation in English units, given in Table 4.
The tabulation includes the test temperature, crosshead rate, maximum true {

stress, oy, the time-to-maximum true stress, t, , A , and tc (which equals tn As)
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FIGURE 8. EXAMPLE USE OF FIGURE 3a. INNER BORE STRAIN AS A
FUNCTION OF WEB FRACTION FOR GRAINS WITH CIRCULAR PERFORATIONS
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TABLE 4. Tabulation of True Stress Failure Data for
RV-7 Propellant (Mix 7374).

Temp., °F (°C) Rate, in/min (cm/s) , min A Y=t A,, min 0y . Psi (kPa)
First Data Set

180 (82.2) 2.0 (0.085) 0.54 0.413 0.223 133 (917)

0.2 (0.008) 4.72 0.300 1.414 102 (703)

0.02 (0.0008) 338 0.200 6.75 83 (572)
135 (67.2) 2.0 (0.085) 0.608 0.253 0.154 163 (1 124)
78 (25.5) 20.0 (0.846) 0.081 0.310 0.025 307 (2118)
2.0 (0.085) 0.702 0.300 0.210 222 (1531)
0.2 (0.008) 6.08 0.248 1.506 178 (1 228)

0.02 (0.0008) 54.0 0.328 17.7 138 (952)
40 (4.4) 2.0 (0.085) 0.716 0.208 0.149 316 (2180)
0(-18) 20.0 (0.846) 0.0742 0.278 0.0206 723 (4 988)
2.0 (0.085) 0.81 0.286 0.232 503 (3470)
-20 (-28.8) 2.0 (0.085) 0.608 0.305 0.186 629 (4 340)
; 0.2 (0.008) 6.75 0.271 1.830 471 (3 249)
E | -40 (-40) 2.0 (0.085) 0.27 0.433 0.117 693 (4 781)
3 -65 (-53.8) 20.0 (0.846) 0.00648 0.414 0.00268 938 (6472)
2.0 (0.085) 0.115 0.403 0.0464 891 (6 147)
0.2 (0.008) 1.485 0.391 0.580 751 (5181)
0.02 (0.0008) 27.0 0.434 11.72 667 (4 602)

Second Data Set

165 (73.8) 20.0 (0.846) 0.0675 0.267 0.018 192 (1 324)

2.0 (0.085) 0.54 0.252 0.136 143 (986)
135 (57.2) 20.0 (0.846) 0.0742 0.266 0.019 228 (1573)
40 (4.4) 20.0 (0.846) 0.0878 0.214 0.0188 . 471 2 (3 249)
0.2 (0.008) 7.763 0.232 1.803 268 (1849)
0(-18) 0.2 (0.008) 7.42 0.235 1.746 369 (2 546)
0.02 (0.0008) 74.2 0.243 18.03 298 (2 056)
-20 (-28.8) 20.0 (0.846) 0.0405 0.343 0.0139 745 (5 140)
-40 (-53.8) 0.2 (0.008) 4.72 0.349 1.648 602 (4 153)
0.02 (0.0008) 574 0.294 16.87 471 (3 249)

Third Data Set
179 (81.6) 0.002 (0.00008) 235 0.154 36.21 70.8 (488)

0.002 (0.00008) 239 0.140 33.39 69.4 (478)
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The separate determinations of 99° B and As are illustrated
below. The parameter B is readily determined from plots of log Tem VS log ttm’
or vs log te (the plots vs log ttm are a little less accurate than those
vs log tf). The parameter %% must be obtained from a plot of log Oom
vs log te. Thus, for illustration purposes we used the latter plot to
obtain both B and % (see Figure 9). The determination of A (see Equation
(8)) is a little more complex and involves the steps illustrated in Figure 10.
Ail three of these determinations are discussed below.

The illustrative plot of log Oym VETSUS log tes after making
the time-temperature shift, ar, yielded the bi-linear curve given in Figure 9.
This form of data plot, by past experience, usually gives a break in the curve
at stress values above about 6.5 MP, (about 950 psi). This stress value is
above any that would be met in service. Hence, that part of the curve is
ignored.

The value of % is 1.313.MPa (from log o
which is taken at t¢ = 1 minute (log te = 0).

o 2.28 or Oum = 191 psi),

The value of B is obtained from this curve using Equation (10),
which may be rewritten

log tf2 - log tf]

B = (15)

For this curve,

<31«
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The determination of AS involves the three steps shown in
Figure 10. The basic engineering stress-time curve (Figure 10a) is
corrected according to Equations (5) and (6) to give the true stress-
time curve illustrated in Figure 10b. From this plot we obtain Oem
and time The stress data are reduced (using the given value of B) to
give (°t/°tm)B’ which is plotted versus Y f
gration of the shaded area may be performed graphically, with a plani- '
meter, by calculation, or gravimetrically (a simple process of cutting
out and weighing the paper of the outlined unit square, then cutting
out and weighing the shaded area. The ratio of the weight of the paper
for the shaded area to that of the unit square is numerically equal to AS).

in Figure 10c. The inte-

3. Time-Temperature Shift Factor, ar

The time-temperature shift factors for the tensile data of
Figure 9 are plotted as log ar vs temperature in Figure 11.

The nomograph does not use the ay values directly. Instead, i
it is necessary to derive the parameters f, and f,. The determination of i
f, involves the ratio R, see Equation (12), where

log ay (-40°C)
Tog a (+60°C)

From Figure 11, i
R = 4.35/-1.38 t

R = -3.15

-33-




Engineering Stress, o, MPa

True Stress, Gy MPa

; 500
3 J L, —-\
400 e
/ E
2 1 300
1
o 200
1] /
100
’ - v = s R 5
0, & T1me57m1n. 2
0 0.10 0.20 0.30
Strain, cm/cm or in./in.
a. Engineering Stress-Strain (-Time) Curve
sl 600 Otm = 4.14 MPa (600 psi s
500 P
i 3
34 //”, E
400 Ve e
] & e S
1
& 54300 Vi o, = (1+e) o ds —
200 el
Vd
100
oJ. 0
0.1 0.2 0.3 0.4 0.5
Time, min.
b. True Stress versus Time Curve
1.0,
¢ 0.9 N
s %\ N
3 o AR
: NN
o
-~ 0.4 K‘k kﬁ \
2 N
& Ag = 0.316 \
% 0. 4(<\ SO\ \‘L\ N
2 <Rtk
0 0.2 0.4 0.6 0.8 1.0
. t/ttm. Dimensionless
Cc. Normalized Stress versus Normalized Time
FIGURE 10. STEPS IN DETERMINING Ag FROM SIMPLE TENSILE DATA

NWC TM 3365

34




(PL€L XIW) INVI1340¥d L-Ad ¥O4

JUNLYd3dW3l LS3L SA le 9071 404 3A4ND WOI¥IdW3 L1 3dn914

Jo So4njedaduwa)

09 oy 0¢ 0 0¢- ov-
| | | | | L
| | g I [ & a7 _ [ [ L |

22l $01 98 39 0§ € vl v- ée- (0]
4, ‘@4njeuddud]

NWC TM 3365

T

Je A

s

Le 6o|
-35-

o 2,0861 = s
9,681 = %4

W R sire- = Lo .y
A T 8€° L~ = (2.09+) e 6o
s€°p = (2,09-) te Boy

m
w
m
:
|
:



NWC TM 3365

Using the given value of R, f2 is determined as 1llustrated
in Figure 12 (an example use of Figure 5), and is equal to 183°C.

Once f2 is determined, f] may be derived as illustrated in
Figure 13. The curve is entered at log ay (at ~40°C) equal to 4.3
and f2 equal to 183°C. The value of f] is read directly as 1980°C.

4. Subcalculation I: Determination of K

This determination involves measurements on SEC test motors.
We assumed a motor which has a grain ID of 1.90 cm, an OD of 12.7 cm,
and a length of 50 cm. The calculated inner-bore hoop strain, using the
procedures previously described, was found to be 0.38 cm/cm. The measured
inner-bore hoop strain was found to be 0.33 cm/cm, which leads to an approxi-
mate value of K = .25 using chart 6 Sub-Calculation I (which is illustrated
in Figure 18).

5. Subcalculation II: Determination of q

This parameter is determined using SECs which have been

thermally cycled to failure. The same SECs used in Subcalculation I
were tested to failure. These motors failed during the 21ist, 16th
and 12th thermal cycles. The geometric mean number of thermal cycles,
N_, is determined from these numbers according to Equation (14), with

9 &
n =3. Thus, Ng is given by

W, = (21 x 16 12)V3 - 15,9

The final determination requires a complete nomographic
analysis, followed by Sub-Calculation II on chart 6. This 1s done
using the grain design parameters 1isted above, together with the
other values listed in Table 3. This gives a value of q of -0.95 in.
in Figure 18.
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EXAMPLE USE OF

FIGURE 5. DETERMINATION OF THE f, PARAMETER OF ay
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B. EXAMPLE USE OF THE NOMOGRAPH

The test case listed in Table 3 was analyzed nomographically
as 1llustrated in Figures 14 to 19. In this example the calculations

are shown as dashed lines, with each step numbered according to the
directions on each chart.

Chart No. 2 was included in the analysis to demonstrate its

use. Actually, the calculated value of & was too small to be of any
interest.

A prediction is not actually demonstrated in the sample but
would follow a similar route through the nomograph pages except that
K and q would be as determined in the sample if RV-7 propellant were
to be predicted in some other size SEC or motor.
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oImEcTIONs,

WITH STEM 0 AT 0.

STEM V

ENTER AT THE GIVEN VALVE OF 1p ON SCALE 1),

CONMECT THIS POINT ON SCALE 73 AND THE GIVEN POINT OF ¥,

SCALE WITH A STRAIGNT LINE. ‘III THE INTERSECTION OF *ll ll-
COMNECT § AND TWE POINT I, ON THE 12 SCALE WITH l STRAIGNT LNt
EXTEND THIS LINE UNTIL 1Y ll".’l(" ™ " scaL

FROM THIS LAST INTERSECTION DRAW A CONNECTING STRAIGHT LINE THROVEN
THME GIVEN VALUE OF 1) ON SCALE f). EXTEND THIS LINE WP 10 THE P SCAL.

FROM THIS INTERSECTION O THE P ulu DRAW A VERTICAL LINE WPWARD
UNTIL 1T INTERSECTS THE GIVEW B CURVE

FROM THIS INTERSECTION .Il' A NORIZONTAL LINE O TwE LEFT LATIL 0T
INTERSECTS THE @ SCALE AT r.

CONNECT r AND §-0 (OW THE 8 SCALE) WITH & "Il.“' LINE. MARR TG
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OT INTERSECTS SCALE R
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. ENTER AT THE GIVEN VALUE OF & ON THE & SCALL.
. CONNECT THIS POINT OB SCALE b AN THE GIVEN VALUL OF § O ™WE 0

SCALE WITH A STRAIGHT Hl(.
AT INTERSECTS STEM ¥ AT

CONNECT THE POINTS s AND y WITH A STRAICHT tlﬂ RARK THE
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EXTEND THIS LINE TO TE LEFT vt

. CONNECY w AND TR GIVEN VALUE OF L11)-1, ON THE € SCALE WITR A

STRAIGHT LI,

. TME INTCRSECTION OF THIS LAST LINE WITH SCALE W GiviS v-:.numo
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€ C.

13. FROM THIS INTERSECTION DRAW A HORIZONTAL LINE UNTIL IT INTERSECTS
IT "NTERSECTS

THE J SCALE AT |.
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FROM COPY FURNISHED T0 bg

TEu A
:uu v au.l.u STEM V b.necrion
T
1. ARTER AT INE GIVEM VALUE OF 13 ON SCALE 1y
. 2. CONNECT TMIS POINT ON SCALE fz AND THE GIVEN POINT OF T, ON THE Ty
1 T SCALE WITH A STRAIGHT LINE. MARK THE INTERSECTION OF This Lime
WiTH STEM C AT c.
? 3. COMMECT ¢ AND THE POINT f, ON THE 1y SCALE WITH A STRAIGHT LINE,
1 17 CRTEND THIS LINE UNTIL 1T INTERSECTE THE T, SCMLE
A, PROM THIS LAST INTERSECTION DRAW A CONNECTING STRAIGHT LINE THROUGH
o . THE GIVER VALUE OF 1) OM SCALE EXTEND THIS LINE UP 10 THE D SCALE.
4
3 S.  FROM THIS INTERSECTION ON THE D SCALE DRAW A VERTICAL LINE UPWARD
UNTIL 17 INTERSECTS THE GIVEN & CURVE.
S 1 +s 6. FROM THIS IMTERSECTION DRAW A HORIZONTAL LINE TO THE RIGHT UNTIL 4T
IMTERSECTS THE € SCALE AT o
7. ENTER AT THE GIVEW VALUE OF f, ON SCAL® G.
o4 $a
3 8. COMMECT THIS POIMI ON SCALE G AND TWE GIVEN POINT OF T, ON THE I
SOALT WITH A STRAIGHT LINE.  MARK THE INTERSECTION OF THIS LINE
WITH STEM W AT B,
3+ is
SCALE A 9. COMNECT h AND THE POINT 1, ON THE G SCALE WITA A STRAIGHT LINE. EXTEND
27 THIS LINE UNTIL IT INTERSECTS THE | SCALE.
—r o e  —
2 - 7T Y+ 0.44 10. FROM THIS LAST INTCRSECTION ORAW A CONNECTING STRAIGHT LINE THROUGH
9 N\ = =" ~Y*0.36 THE GIVEN VALUE OF f; ON SCALE J. EXTEND THIS LINE UP TO THE K SCALE. “ %
3 =4 Y+ 029 )
— —— Y022 11. FROM TWIS INTERSECTION ON THE K SCALE DRAW A VERTICAL LINE UPWARD
£ e UNTIL 1T INTERSECTS THE GIVEN B CURVE.
e ~Y* 048
s ‘E.. . 3 e ~ Y« 0.07 12, FROM THIS INTERSECTION ORAW A HORIZONTAL LINE TO THE LEFT UNTIL IT
i e = - Rt
b o — INTERSECTS THE L SCALE AT 2.
@ - : Aﬁa_..__L._br—-o——— YO 13. CONNECT 2 AND E-O (ON THE € SCALE) WITH A STRAICHT LINE. MARK THE
= - e s S e e s SCALE 2 INTERSECTION OF THIS LINE WITH THE STEM F AT
2 e
4 e S 8 10 12 4 6 18 20 14. COMNECT (NTERSECTIONS o AND f WITH A STRAIGHT LINE. EXTEND THE LINE
™™ L UMTIL IT INTERSECTS SCALE L.
1 15. FROM THIS POINT ON THE L SCALE ORAW A HORIZONTA' LINE TO THE RIGHT
o UMTIL IT INTERSECTS THE M SCALE AT m.
16. ENTER AT THE GIVEN VALUE OF b ON THE b SCALE.
-3} 17. FROM THIS POINT ON THE b SCALE DRAW A VERTICAL LINE UPWARD UNTIL IT
INTERSECTS THE GIVEN Wy CURVE.
o & 15, FROM THIS INTERSECTION DRAW A HORIZONTAL LINE TO THE LEFT UNTIL 1T
> b-e INTERSECTS THE P SCALE AT p.
19. CONNECT p AND M-0 (ON THE M SCALE) WITH A STKAIGHT LINE. MARK THE
P 3 5 TNTERSECTION OF TWIS LINE WITH THE STEM W AT
- - -
' 20. CONNECT n AND m ION THE M SCALE) WITH A STRAIGHT LINE. EXTEND THE
E LENE UNTIL IT INTERSECTS SCALE P.
hd 1-¢ 3 21. FROM THIS POINT ON THE P SCALE DRAW A HORIZOMTAL LINE TO THE RIGHT
-8+ UNTIL IT INTERSECTS THE Q SCALE AT a.
? 7 3 22, ENTER AT THE GIVER VALUE OF b ON THE S SCALE.
-7 $-
3 23. FROM THIS POINT ON THE S SCALE DRAW A VERTICAL LINE UPWARD UNTIL
. 1T INTERSECTS THE GIVEN B CURVE.
.t +-e 26. FROM THIS INTERSECTION nu- A HORIZONTAL LINE TO THE LEFT UNTIL IT
INTERSECTS THE T SCALE A
29. CONNECT t AND Q-0 (ON THE @ SCALE) WITH A STRAIGHT LINE. MARK TNE
1 19 INTERSECTION OF THIS LINE WITH THE STEM R AT r.
26. COMNECT r A 10N THE Q SCALE) WITH A STRAIGHT LINE. EXTEND THE
o | o LINE UNTIL IT INTERSECTS SCALE T.
27. FROM THIS POINT ON THE T SCALE DRAW A WORIZONTAL LINE TO THE RICHT
UNTIL 1T INTERSECTS THE U SCALE AT u.
i
h 20, ENTER AT THE GIVEN VALUE OF b ON THE Z SCALE.
29. FROM THIS POINT ON THE Z SCALE DRAW A VERTICAL LINE UPWARD UNTIL 1T
INTERSECTS THE GIVEN Y CURVE.
3. FROM THIS INTERSECTION ou- A HORIZONTAL LINE TO THE LEFT UNTIL 1T
TERSECTS THE A SCALE A
S CONNECT o ANC 1.0 WITH A smucm LINE. WARK THE INTERSECTION OF THIS
LINE WITH TUE SiEM V A
32. COMNECT v A (ON THE U SCALE) WITH A STRAIGHT LINE. EXTEND THE
LINE UNTIL 1T SECTS SCALE A.
THIS LAST INTERSECTION WiTH SCALE A GIVES vut REQUIRED VALUE OF A. THIS
QUANTITY 15 TO BE USED IN STEP 9 ON CHART 4.
STRUCTURAL DESIGN NCMOGRAPH
FOR THERMAL CYCLING
CHART 5 ~ DAMAGE ANALYSIS
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SCHEMATIC EXAMPLE
REQUIRED PARAMETERS:

SUBCALCULATION I
€ (CALC) = 0.377 em/enn,
€o (MEAS) = 0.33 Cwnform
K e g
SUBCALCULATION II
€o (CALC) = 9,379Cm/Ccm
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MPa

SCALE Eeqy
MPa
" so 4
1‘!!?3'“ m 4
ﬂxlnﬂ“mﬂ TODDE
: 30 +
20
STEM C
1s }
12 +
1+
10.0 ][:
90 +
80 1
70 +
60 T
—]_ @ 5.0 -k
sl
e AT
BT

30T
20 T
s ]
0.1

0.9
DIRECTIONS: 08 +
OVERALL CALCULATION 07 71

1. ENTER AT POINT OF € o [CALCULATED] SCALE. 0.6 1

2. DRAW A VERTICAL LINE UNTIL IT INTERSECTS THE K CURVE,
HAVING THE K VALUE FROM SUBCALCULATION I.

3. FROM THIS INTERSECTION ORAW A WORIZONTAL LINE UNTIL
IT INTERSECTS THE €g [MEASURED] SCALE.

4. DRAW LINE BETWEEN THIS INTERSECTION ON THE€g [MEASURED]
SCALE AND THE GIVEN VALUE ON THE Eeff SCALE. MARK THE
INTERSECTION OF THIS LINE WITH THE STEM C AT c.

5. DRAW A LINE BETWEEN ¢ AND THE VALUE OF THE g SCALE AND
EXTEND LINE TO THE RIGHT UNTIL 1T INTERSECTS THE P SCALE
AT p.

6. FROM THIS INTERSECTION DRAW A HORIZONTAL LINE UNTIL
IT INTERSECTS THE GIVEN 8 CURVE [INTERPOLATED CURVES
SHOULD BE DRAWN IN ADVANCE].

-

7. DRAW A VERTICAL LINE DOWNWARD FROM THE B INTERSECTION
UNTIL 1T INTERSECTS THE SCALE AT POINT d.

8. CONNECT d AND THE GIVEN VALUE ON mz'? SCALE DETERMINED
IN SUBCALCULATION IT. MARK THE INTERSCCTION OF THIS
LINE WITH THE STEM F AT f.

9. DRAW A LINE BETWEEN f AND THE GIVEN VALUE ON THE A

K : 0.25  [SEE SUBCALCULATION I]
Ty = |.313 MPa
Eett = 3.45 MPa [FROM CHART 4]
8 « 84
Ny = |54 CYCLES
A = ~/,6  [FROM CHART 5]
RESULT:
% :=0,95"

Figure 19.

45

SCALE. EXTEND THIS LINE DOWNWARD UNTIL IT INTERSECTS
THE N SCALE. THIS INTERSECTION IS THE NUMBER OF CYCLES
TO FAILURE, N.

SUBCALCULATION I - EMPIRICAL DETERMINATION OF K.

“w e W N -

THE GIVEN QUANTITIES ARE FOR A STRAIN EVALUATION CYLINDER
AND INCLUDE: € o[CALCULATED] AND € o [MEASURED].

ENTER AT THE GIVEN FOINT ON €g [CAICULATED] SCALE.
DRAW A VERTICAL LINE UPWARD,

ENTER AT THE GIVEN POINT OF € [MEASURED] SCALE.
DRAW A HORIZONTAL LINE TO THE LEFT.

THE INTERSLCTION OF THE WORUZONTAL AND VERTICAL LINES
DEFINES THE K CURVLE APPROPRIATE TO THE GIVEN PROPELLANT
FORMULATION, THIS CURVL MAY FALL BETWFEN THOSE DRAWN
SO AN INTCRPOLATED CURVE SHOULD BE DRAWN FOR THE LATER
CALCULATIONS.
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THE D SCALF (SEE STEP 7). EZTCND THF LINE DOWHNWARD, THE 2
INTERSECTION WITH THE g SCALE GIVES TNE EIPIKICAL VALUY CHART 6 - FINAL CALCULATIONS
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NWC TM 3365
SECTION 4

VARIATIONS IN GRAIN FAILURES

Past experience in the thermal cycling of full scale and SEC motors
has shown that the inner-bore strain failures are subject to considerable
variation. The factors contributing to this variation fall into four
categories: 1. Dewetting behavior of the propellant; 2. surface flaws;
3. vagaries of environmental control; and 4. the inherent variability
of material failure. These factors are discussed below.

A. DEWETTING BEHAVIOR OF THE PROPELLANT

The dewetting of the propellant, as it is being strained in tension,
was described briefly in Section 2. It is the cause of the variations in
K and q in the nomograph. But, this behavior may also affect grain cracking
at the inner-bore. This is brought about by the pattern of propellant
dewetting, which greatly affects its notch, or flaw, sensitivity.

A propellant which dewets in local bands will tend to accentuate
a flaw or notch; thus accelerating the inner-bore cracking of a grain.

Some propellants dewet uniformly through the material converting
it to a sponge. This soft spongy material acts to reduce flaw, or notch,
sensitivity. Hence, grain inner-bore cracking rates are reduced.

A1l propellants range in their dewetting between the two limiting
behaviors described above. But, as a simple rule, those propellants
exhibiting the largest values of K and q (in the nomographic analysis)
may be associated with the thinnest bands of localized dewetting (high
flaw sensitivity).
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E Please note: Negative values of q indicate a softening
; of the propellant. The positive values, indicate that
the propellant has become harder.

The smallest values of K and q (q becoming more negative) are expected
to correlate with an overall spongy propellant and reduced flaw sensitivity.

B. SURFACE FLAWS

Past experience has shown that inner-bore cracks can be initiated by
seemingly insignificant flaws; i.e., (1) a flick of red burning rate catalyst
that was about .03 in. x .03 in. x .06 in., (2) a ridge left in the propellant
where two parts of a casting mandrel were mated to within 0.005 in., (3) acciden-
tally made surface scratches that were thought to be about 0.002 in. deep; and
(4) near-surface casting bubbles.

It is essential, then, that every crack be examined to detect its
probable origin, and to determine if the motor behavior is an outlier
because of an unusual flaw.

C. VAGARIES OF ENVIRONMENTAL CONTROL

This testing is more sensitive to variations in the temperature
environment than to all of the other test variables. Hence, it is critical
that the temperature be controlled within as narrow 1imits as possible. A
1limit control of better than + 1°C is recommended.

The next most important parameter is atmospheric moisture. Care
must be taken not to expose a cold grain to the atmosphere. A test for
accidental moisture exposure is a change in the location of the bore crack
away from the region of highest strains. Usually, the presence of air
moisture will interact with the grain to cause failure initiation at a
point that is about one-third the length of the motor from the exposed
end. The high strain region is usually at the mid-point.
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NWC TM 3365

D. STATISTICS OF MATERIAL FAILURE

When tested for fatigue, solid propellant failures usually follow
a Weibull statistical distribution. The Weibull distribution is usually

hard to characterize accurately, so we use a normal logarithmic distribution

for convenience. From either of these distributions we can generate the
required statistical inferences.

The most important statistical inference is the prediction of the
"expected" range of motor failures for a set of n motors. That is, the
prediction of the number of cycles-to-failure for the first motor of the
set, Ny, to the last (or nth) motor of the set, Ny The expected range,
then, is N] to Nn‘

The range prediction is made in terms of the expected first failure
in the set of n motors. Figure 20 contains plots of the ratio N]/ﬂ'versus
the motor sample size n at various levels of the propellant log-normal
standard deviation, o(log t¢). The use of the curve requires: 1. The
nomographic prediction of N, which is taken as the value of the predic-
tion (N); 2.the motor sample size, n, for which the prediction is to be

made; and 3. an estimate of o(log tf),a(log tf). The curve is entered at n and

o(log tf) and the expected ratio N]/ﬁ'is read directly. The expected
value of N] is obtained by the relation

Ny = (N,/ﬁ) x N (16)

The expected value of Nn is based upon the logarithmic nature of
the statistical distribution and is approximated by

N, = N/ (Ny/R) (17)

Thus, both N] and Nn can be approximated.
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The log-normal standard deviation can be estimated from a minimum
set of about twenty tensile specimens, all tested at the same rate and
test temperature; i.e., 25°C. The data are reduced first to get m and
tf (discussed in Section 2). Then the data are further reduced to give
all of the times-to-failure, te, at the same stress level. We can arbi-
trarily choose the stress level to be 2 MPa. which gives for the equivalent
time-to-failure, tees the relation

- Ztm f (18)

The logarithms of these tfe values are now analyzed by simple normal
distribution statistics to obtain the estimated standard deviation o(1og tf).
We have found it convenient to use statistical graph paper with plots of
log tfe versus the cumulative percentage of the number of samples. Such a
plot is given in Figure 21.
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TO FAILURE, N.
SUBCALCULATION I - EMPIRICAL DETERMINATION OF K.
THE GIVEN QUANTITIES ARE FOR A STRAIN EVALUATION CYLINDER -
AND INCLUDE: € o [CALCULATED] AND € o [MEASURED].
1. ENTER AT THE GIVEN POINT ON €g [CALCULATED] SCALE.
2. DRAW A VERTICAL LINE UPWARD.
3. ENTER AT THE GIVEN POINT OF € [MEASURED] SCALE.
F 4. DRAW A HORIZONTAL LINE TO THE LEFT,
0 5. THE INTERSECTION OF THE HORIZONTAL AND VERTICAL LINES
F DEFINES THE K CURVE APPROPRIATE TO THE GIVEN PROPELLANT
FORMULATION. THIS CURVE MAY FALL BETWEEN THOSE DRAWN
) SO AN INTERPOLATED CURVE SHOULD BE DRAWN FOR THE LATER
i N CALCULATIONS.
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SUBCALCULATION IT - EMPIRICAL DETERMINATION OF 9

THE GIVEN QUANTITIES ARE THE .SAME AS REQUIRED IN THE
OVERALL CALCULATION (EXCEPT FORQ, ) PLUS THE GEOMETRIC
MEAN NUMBER OF CYCLES TO FAILURE, N, OF THREE OR MORE
STRAIN EVALUATION CYLINDERS.

STEPS 1 THROUGH 7 OF THE OVERALL CALCULATION ARE PERFORMED
AS DESCRIBED, BUT STEPS 8 AND 9 ARE REVERSED.

ENTER THE VALUE OF A ON THE A SCALE AND THE GEOMETRIC
MEAN OF OBSERVED CYCLES TO FAILURE ON THE N SCALE
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INTERSECTION OF STEM F AT f.
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SACRANENTO, CALIFORNIA

STRUCTURAL DESIGN NOMOGRAPH
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THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED T0DD¢

DIRECTIONS

1 ENTER AT THE GIVEN VALUE OF fz ON SCALE 1

? CONNECT THIS POINT ON SCALE f AND THE GIVEN POINT OF Ty ON THE T
SCALE YITH A STRAIGHT LINE. MARK THE INTERSECTION OF rkus LINE
WITH STEM C AT ¢,

3. CONNECT ¢ AND THE POINT 1, ON THE 5 SCALE WITH A STRAIGHT LINE.
EXTEND THIS LINE UNTIL T IN"IS!CTE THE T, SCALE.

4. FROM THIS LAST INTERSECTION DRAW A CONNECTING STRAIGHT LINE THROUGH
THE GIVEN VALUE OF f; ON SCALE ). EXTEND THIS LINE UP TO THE O SCALE.

5 FROM THIS INTERSECTION ON THE D SCALE DRAW A VERTICAL LINE UPWARD
UNTIL IT INTERSECTS THE GIVEN b CURVE,

b 6. FROM THIS INTERSECTION DRAW A HORIZONTAL LINE TO THE RIGHT UNTIL IT
A INTERSECTS THE £ SCALE AT e,

T. ENTER AT THE GIVEN VALUE OF f; ON SCALE G.

553%‘_5 A 8. CONNECT THIS POINT ON SCALE G AND THE GIVEN POINT OF Ty ON THE I
3 Y=0.73 SCALE WITH A STRAIGHT LINE. MARK THE INTERSECTION OF THIS LINE
B3 WITH STEM H AT h,
A Y =065
=: Y= 0.58 9. CONNECT h AND THE POINT f, ON THE G SCALE WITH A STRAIGHT LINE. EXTEND
2 Vi THIS LINE UNTIL IT INTERSECTS THE I SCALE.
Y= 0.51
- Y = 0.44 10. FROM THIS LAST INTERSECTION DRAW A CONNECTING STRAIGHT LINE THROUGH
=== Y = 0.36 THE GIVEN VALUE OF f; ON SCALE J. EXTEND THIS LINE UP TO THE K SCALE.
\ ol r e X % °'229 1. FROM THIS INTERSECTION ON THE K SCALE DRAW A VERTICAL LINE UPWARD
3 e Y=02 UNTIL IT INTERSECTS THE GIVEN B CURVE.
3 Y= 0.5
3 Y= o0.07 12. FROM THIS INTERSECTION DRAW A HORIZONTAL LINE TO THE LEFT UNTIL IT
3 S=a=== INTERSECTS THE L SCALE AT 2.
o4
3 S Ny =0 13. CONNECT 2 AND £+0 (ON THE € SCALE) WITH A STRAIGHT LINE. MARK THE
e e INTERSECTION OF THIS LINE WITH THE STEM F AT f.
3 o = ——
102 4 6 8 10 12 14 16 18 20 14. CONNECT INTERSECT/ONS e AND f WITH A STRAIGHT LINE. EXTEND THE LINE
_._]r b,cm UNTIL IT INTERSECTS SCALE L,
:E 15. 7ROM THIS POINT ON THE L SCALE DRAW A HORIZONTAL LINE TG THE RIGHT
1 UNTIL IT INTERSECTS THE M SCALE AT m.
o A 16. ENTER AT THE GIVEN VALUE OF b ON THE b SCALE.
1 17. FROM THIS POINT ON THE b SCALE DRAW A VERTICAL LINE UPWARD UNTIL IT
i INTERSECTS THE GIVEN Wy CURVE.
31 18. FROM THIS INTERSECTION DRAW A HORIZONTAL LINE TO THE LEFT UNTIL IT
1 INTERSECTS THE P SCALE AT p.
i; 19. CONNECT p AND M=0 (ON THE M SCALE) WITH A STRAIGHT LINE. MARK THE
3 INTERSECTION OF THIS LINE WITH THE STEM N AT n.
e 20. CONNECT n AND m (ON THE M SCALE) WITH A STRAIGHT LINE. EXTEND THE
1 LINE UNTIC (T INTERSECTS SCALE P.
;3 21. FROM THIS POINT ON THE P SCALE DRAW A HORIZONTAL LINE TO THE RIGHT
e UNTIL IT INTERSECTS THE Q SCALE AT q.
I 22. ENTER AT THE GIVEN VALUE OF b ON THE S SCALE.
3 23. FROM THIS POINT ON THE S SCALE ORAW A VERTICAL LINE UPWARD UNTIL
ax IT INTERSECTS THE GIVEN B CURVE.
24. FROM THIS INTERSECTION DRAW A HORIZONTAL LINE TO THE LEFT UNTIL IT
INTERSECTS THE T SCALE AT t.
25, CONNECT t AND Q-0 (ON THE Q SCALE) WITH A STRAIGHT LINE. MARK THE
INTERSECTION OF THIS LINE WITH THE STEM R AT r.
26. CONNECT r AND q (ON THE Q SCALE) WITH A STRAIGHT LINE. EXTEND THE
LINE UNTIL (T [NTERSECTS SCALE T.
27. FROM THIS POINT ON THE T SCALE DRAW A HORIZONTAL LINE TO THE RIGHT
UNTIL IT INTERSECTS THE U SCALE AT u.
28. ENTER AT THE GIVEN VALUE OF b ON THE Z SCALE.
29. FROM THIS POINT ON THE Z SCALE DRAW A VERTICAL LINE UPWARD UNTIL (T
INTERSECTS THE GIVEN Y CURVE.
30. FROM THIS INTERSECTION DRAW A HORIZONTAL LINE TO THE LEFT UNTIL IT
INTERSECTS THE A SCALE AT a.
0.2 31. CONNECT a AND U0 WITH A STRAIGH™ LINE. MARK THE INTERSECTION OF THIS

LINE WITH THE STEM V AT v

32. CONNECT v AND u (ON THE U SCALE) WITH A STRAIGHT LINE. EXTEND THE
LINE UNTIL IT INTERSECTS SCALE A,

THIS LAST INTERSECTION WITH SCALE A GIVES THE REQUIRED VALUE OF A. THIS
QUANTITY IS TO BE USED IN STEP 9 ON CHART 6.

XM
STRUCTURAL DESIGN NOMOGRAPH
FOR THERMAL CYCLING

CHART 5 - DAMAGE ANALYSIS
7-12-77




SCHEMATIC EXAMPLE

SCALE G

]

I

L |

|l

/1

T

s

et

B+t 4

-

SCALE G SCALE 1

SCALE D
STEM H
5520 |

[ @E 7‘
w: k’

REQUIRED PARAMETERS

b =__ CM
"'_
TL=_°C

V = ___ MPa

W = __ MPa

S = VeW= ___ MPa
RESULTS

Eeff = MPa

MSPAQBS BEST a1

m&mmwc

THIS LINE UNTIL IT INTERSECTS THE I SCALE.

20
THIS PAGE IS BEST QUALITY PRACTICABLE
i b
g FROM COPY FURNISHED TO DDC
@SiaE e
b
e L
N1
NI
T INT]
a8 STEM H SCALE 1 SCALE J
1 S~wr :0.50
+ 1
NG
ot T~ws :0.55
: b =25CM~_|
N I ~wr - 0.60 b =10 Cm
b =15Cm
=——ws = 0.65
= ws = 0,70 b =19 CM N /‘b= 19 ¢!
———wr:=0.75 1:0 — 0
PNwr = 0.80 i b= 15 CI
\ ] 0 B = b- 25 08
we =0.85 -60 -40 -30 -10
] -1.0+ i '°C ok I8 G}
SCALE T,
-2.0- + -2.0
N
-3.0+ Fiozn
=1
T -4.0—1 +-4.0
}
-5.0 T =5:0
20 1
-6.0 1 +-6.0
-7.04 +-7.0
-80 1+ +-8.0
-9.0 + +-9.0
9.
-10.0 + 4 -100 10. 8
DIRECTIONS: =110 4110 11,
1. ENTER AT THE GIVEN VALUE OF b ON THE C SCALE. 12.
2. DRAW A VERTICAL LINE UPWARD UNTIL IT INTERSECTS CURVE C.
13.
3. FROM THIS INTERSECTION DRAW A HORIZONTAL LINE UNTIL IT INTERSECTS
THE G SCALE AT c.
14,
4. CONNECT POINT ¢ AND THE POINT MARKED I<0 ON THE I SCALE WITH A
STRAIGHT LINE. MARK THE INTERSECTION h OF THE LINE ON STEM H.
THIS POINT WILL BE USED AGAIN IN STEP 8. 15.
5.  ENTER AT THE GIVEN VALUE OF b ON THE D SCALE.
6. DRAW A VERTICAL LINE DOWNWARD UNTIL IT INTERSECTS THE SPECIFIED 16.
wf CURVE. !
7. FROM THIS INTERSECTION DRAW A HORIZONTAL LINE UNTIL IT INTERSECTS 17. 8
THE G SCALE AT g.
8. CONNECT POINTS g AND h (SEE STEP 4) WITH A STRAIGHT LINE.




: THIS PAGE IS BEST QUALITY PRACTICABLE
QUALITY PRACTICABLE FROM COPY FURNISHED TODDC ____—
Toppc ___
SCALE E
50
SGALE 4 STEMK SCALE F STEM L 40
i 30
20
|_—b=19Cm 15
E efr, MPa
= b=15 CM
——b=25CM F=0- & 10 3
-30 -20 -10 =g 3§
c +-1.0 s 8 :
i, £ .»
“ 6 2
+ -2.0 %)
5
2
=30 & :
3 s
+-4.0 §
2
+-5.0
1.5
+-6.0
1.0
09
Li=sp o 0.8
0.7
6
+-8.0 e
+-9.0
9. THIS INTERSECTION ON THE I SCALE IS PROJECTED HORIZONTALLY TO ITS
IDENTICAL VALUE ON THE J SCALE.
1+ -10.0 10. CONNECT THIS POINT ON THE J SCALE WITH POINT F-0 ON THE F SCALE.
MARK THE INTERSECTION k OF THE LINE ON STEM K. THIS POINT WILL
BE USED AGAIN IN STEP 14.
< -11.0 11. ENTER AT THE LOWER TEMPERATURE T ON THE T SCALE.
12. DRAW A VERTICAL LINE UPWARD UNTIL IT INTERSECTS THE INTERPOLATED
b CURVE.
RVE C.
13. FROM THIS INTERSECTION DRAW A HORIZONTAL LINE UNTIL IT INTERSECTS
IL IT INTERSECTS THE J SCALE AT j.
14. CONNECT POINTS j AND k (SEE STCP 10) WITH A STRAIGHT LINE. EXTEND
SCALE WITH A THIS LINE UNTIL IT INTERSECTS THE F SCALE AT f.
N STEM H.
3 15. CONNECT POINT f AND THE GIVEN VALUE OF S(=V+W) ON THE E SCALE
WITH A STRAIGHT LINE. MARK THE INTERSECTION £ OF THIS LINE ON THE
STEM L.
THE SPECIFIED 16. FROM F=0 ON THE F SCALE EXTEND A LINE THROUGH POINT &, CONTINUE c*) SACRANENTO, CALIFORRIA
3 THIS LINE UNTIL IT INTERSECTS THE E SCALE.
STRUCTUR IGN RAPH
IL IT INTERSECTS 17. THIS INTERSECTION PROVIDES THE VALUE OF THE " PARAMETER, WHICH CTURAL DESIGN NOMOG
IS REQUIRED FOR THE ANALYSES OF CHART 6. USE THIS QUANTITY IN FOR THERMAL CYCLING
STEP 4 OF CHART 6. ‘
LINE. EXTEND CHART 4 -TOTAL EFFECTIVE MODULUS ¢
6-24-77 3




j
SCALE & STEM Q SCA:.E R SCALE S STEM U '
|
] JFU EFENRNE RS
+—+ R ) i i o s vr*—-q‘
B=6 AUEI e T—I + : T ;
3 i 1. | 1 BE
EESNEENSEENENRENNNES
LENERREENEENNNNERURNE |
,K L - + L byt |
100 N RERNERN ~
B-8 4—‘ ERE AT EEEE A
0.90 RS EES AN RNEE R SR &
Jded A X 11
1 [ Tt T
0380 i \r\ TX‘:‘Tl EENEENANEREaNE
ANEAVERNENEENSNEEENEEREN
0.70 B=10 N 75 £ A e 1 T T . % : 1
0.60 L IREEEEE YR
B=l2 - ot |
050 : ey ]
B=14 < ] i i |
N el {
#.40 B:16 QAW 1 111
0.30 ERASNAN EEAREEES ’
0.20 EE AEMENEES J {
e R
0.10 ' ‘ —— s =
1] 1 i l L EEEE Gxin
0.00F+ §=0 EJI;‘IL ‘TLTQ \\L\U; B:14
8 o 2 5 2 ; B:=12
ENNSRSEERERNEE 2
‘ TEBLDEERE IEEE N an e
SEESENEEEWNNERENEENENRSCL
SR \ ‘ ) [
4‘ T t SRR T ¥ |
e — N _~B=6 g
| | o e o oy b 3
! Jeake L | { 5
Jr gl it M HE
|E S 1 EREREESRRE S :
DIRECTIONS:
1. ENTER AT THE GIVEN VALUE.
2. CONNECT THIS POINT ON §
SCALE WITH A STRAIGHT L
WITH STEM 0 AT 0, '
REQUIRED PARAMETERS: 3. CONNECT 0 AND THE POINT
o EXTEND THIS LINE UNTIL &
° SCALE T, bbb 4. FROM THIS LAST INTERSEC!
181 it [C ] = 7S G M Y THE GIVEN VALUE OF f) O
FROM CHART 2 %
s 5. FROM THIS INTERSECTION
8 aiiatias UNTIL IT INTERSECTS THE
¥ °
fos _°C 6. FROM THIS INTERSECTION i
£, °C INTERSECTS THE R SCALE
o STEM O
E(N-Ee = ___ MPo 7. CONNECT r AND 8-0 (ON
INTERSECTION OF THIS LI
RESULT :
8. CONNECT q AND THE GIVE
W MPa e IT INTERSECTS SCALE R.
200 190 180 I70 160 150 140 130 120 110 100 9. FROM THIS POINT ON THE
SCALE fp prirtrrietrtrbrtrttrtrbbrteprbrtrtet bbb bbb ebed] UNTIL 1T [NTERSECTS THE ;
] 10. ENTER AT THE GIVEN VAL
fr 11. CONNECT THIS POINT ON §
SCALE WITH A STRAIGHT
IT INTERSECTS STEM Y A
12. CONNECT THE POINTS §
INTERSECTION OF THIS L
MPAGISBBTQUAMNWI_W
FHOM COPY FURNISHED 70 DDG 7 13, CONNECT u AND THE GIV
< L A RPN STRAIGHT LINE. i
14, THE INTERSECTION OF TH
VALUE OF W. THIS QUAN!
CHART 4,

T T T —




AT R A AT O

SCALEE SCALE b
L‘rsu u E(I)-Ee,MPa b,cm
; 10
XHIS PAGE IS BEST QUALITY PRACTICABLE 9
i FROM COPY FURNISHED TPDDC ___ 8
+ 20
T +19
6 s d
417
SCALE W 5 +16
W, MPa STEM Y T15
50 4 +14
40 T13
30
b 3 412
+11
10 +10
8 2
g -+ 9
4
3 LS 48
2
T 4
10 0 L 65
g'g 0.9 H6.0
gﬁg 0.8 55
g 0.7
50
0.6
145
"}440 E
35
GIVEN VALUE OF f ON SCALE fp. 29
§ POINT ON SCALE f, AND THE GIVEN POINT OF T; ON THE T,
STRAIGHT LINE. MARK THE INTERSECTION OF THIS LINE o
T 0. J
THE POINT f, ON THE f; SCALE WITH A STRAIGHT LINE.
LINE UNTIL IT "NTERSECTS THE T, SCALE. THIS PAGE IS
AST INTERSECTION DRAW A CONNECTING STRAIGHT LINE THROUGH p— BEST QMInmmcmx
LUE OF f, ON SCALE f;. EXTEND THIS LINE UP TO THE P SCALE. COPY FURNISHED TO DDC
ERSECTION ON THE P SCALE DRAW A VERTICAL LINE UPWARD SCHEMATIC EXAMPLE
SECTS THE GIVEN B CURVE.
TERSECTION DRAW A HORIZONTAL LINE TO THE LEFT UNTIL IT SCALE 33., “:CA'-ER SCALE S STEM U SCALE E SCALE b
E R SCALE AT r.
$-0 (ON THE 8 SCALE) WITH A STRAIGHT LINE. MARK THE SEaE N ) ~—©
OF THIS LINE WITH THE STEM Q AT q.
THE GIVEN VALUE ON THE & SCALE. EXTEND THE LINE UNTIL
SCALE R. <
@ @4©_ -]
NT ON THE R SCALE DRAW A HORIZONTAL LINE TO THE RIGHT 8.al-— T ® > od
SECTS THE S SCALE AT s. | e o
3 MR | IR et AR,
'GIVEN VALUE OF b ON THE b SCALE, @ } -SCALE P F‘ Tl
@
BOINT ON SCALE b AND THE GIVEN VALUE OF B ON THE B / SEALE )
STRAIGHT LINE. EXTEND THIS LINE TO THE LEFT UNTIL ]
STEM Y AT y. e SCALE T
POINTS s AND y WITH A STRAIGHT LINE. MARK THE -—®—Q—@~_ STEM 0
OF THIS LINE WITH THE STEM U AT u. 4
1 SCALE ¢
0 THE GIVEN VALUE OF E(1)-Eg ON THE € SCALE WITH A }D ¢ c*}"“"u e ve i e 1
1ON OF THIS LAST LINE WITH SCALE W GIVES THE REQUIRED STRUCTURAL DESIGN NOMOGRAPH
THIS QUANTITY PLUS V FROM CHART 1 GIVES S ON FOR THERMAL CYCLING
CHART 3- VISCOELASTIC COMPONENT
6-23-17




SCALE K

=
.T i i
\)\l
TL: > | mIs
~20ec—F——Nc PA@ISBETQ
I COPY FURNISHzp
N |
- ¥ i
-30°C—] ‘ = N | E
. N .
: i ]
/?'\ ] N i STEM H
-40°c—— K\ \\ , SCALE © SCALE G
! Y
i T < N
-50°C—F—+ . ™ ™
i o ] i
-60°C— 0 0.85
| EFER aBTN 3
T K 0.80 T
T < e 0.75 ~ [ T
! < - 0.70 — ! K
- < AN 0.65 ——1~ i 4
] | | s 0.60 — ey \5 1
| ‘ N N 0.55 — SR
f K 0.50 — NN
1 a1 N \\ 1
NS %
N
ANNAAN 8
NN
16 14 12 10 8 6 NN
SCALE B DA il ;
VI AN 4 A
| D SR ) R R
. EEAVAR SN
N
REQUIRED PARAMETERS 20 18 16 412 10 ) ]
b = _em SCALE b, cm
T
B L AN E
f, CENeal |-
f, s
B w g THIS PAGE IS BEST QUALITY PRACTICABLE
Ty-Tos __ °C FROM COPY FURNISHED TODDC ____—
RESULT:
3 SRR
SCHEMATIC EXAMPLE

SCALE K
|

SCALE G
SCALE © ,srsu H
DN e
u,@-——;" N
@5/ :
®

SCALE b,cm|

)
S W )

SCALE SCALE f,
w ‘-\ SCALE M

SCALE

STEMJY s{mg S PAGE 15 B!
o) B Pk

S

SCALE fp.°C

e

EExeader




THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED T0DDG ___—

QUALITY PRy
SHED m mcm %
boe SCALE M
L
T =
-70°C r
.GO-CQN ]ULHHIMHM
~5o'c\*§ EREECE SRR EEEE
. -40°C XN ¥ [ i | 1 1
-30* C~ IS T T T T T T T T1] EEDED
SCALE T20°C PP ARRAREESNENEELE
T .-T -10°C —J3=3 + } + T
RSN soale s ~ e | i
STEM J STEM L SCALE 8 150 H BEEREEEE R i
] ' Ti= 1
i N -10°¢C i
-1.000 100 “ : 1 T R %-40% 3
g R || l -50°C
888 R T | /—60°c ;
- [ i [ 11 [ -70°C :
200 e - -
-.100 : - s
- .060 1 | I 5118 ! !
- 040 ¥+ 2000 ﬁJl ol 1 R 5
- .020 3 1800 100 120 140 (60 (80 200 : 8
-.010 11600 SCALE f5,°C 3
Eeas + 1400
e + % I8
¥ 1200 i :
+ 1000 {5
F o0
+ 800 !
/ + 700 i
-f— 600 : |
) 3
Mﬂ IF THE MOTOR RADIUS, b, IS LESS THAN 9 cm THIS CHART MAY BE \
OMITTED AND THE ENTRY ON CHART 3 wWILL BE § = 0. v:
i ENTER AT THE GIVE VALUE OF B ON SCALE B. :

2. DRAW A VERTICAL LINE UPWARD UNTIL IT INTERSECTS THE GIVEN T CURVE.

3. FROM THIS INTERSECTION DRAW A HORIZONTAL LINE UNTIL IT INTERSECTS
THE K SCALE. MARK THIS INTERSECTION k.

4. ENTER AT THE GIVEN VALUE OF b ON SCALE b.

5. DRAW A VERTICAL LINE UPWARD UNTIL IT INTERSECTS THE GIVEN wy CURVE.

6. FROM THIS INTERSECTION DRAW A HORIZONTAL LINE UNTIL IT INTERSECTS THE 1 |
@ SCALE. MARK THIS INTERSECTION 8. |

7. CONNECT POINTS k AND 8 WITH A STRAIGHT LINE. EXTEND THE LINE UNTIL
§ IT INTERSECTS STEM W AT h.

8. CONNECT h AND THE GIVEN VALUE ON THE f; SCALE. MARK THE INTERSECTION
OF THIS LINE WITH THE STEM J AT j.

I w—

9. DRAW A LINE BETWEEN j AND THE GIVEN VALUE ON THE T, - TL SCALE. MARK
THE INTERSECTION OF THIS LINE WITH THE STEM L AT 2,

10. ENTER AT GIVEN VALUE OF f; ON SCALE fa.

Wi A

11. DRAW A VERTICAL LINE UPWARD UNTIL IT INTERSECTS THE T CURVE.

S BIST JUALITY PRACTICARLE -
;.: -commeee AV UDC A"

;Rg?gdlgls INTERSECTION DRAW A HORIZONTAL LINE UNTIL IT INTERSECTS THE

13. DRAW A LINE BETWEEN THIS INTERSECTION ON THE M SCALE AND THE POINT
2 ON STEM L.

THE INTERSECTION OF THIS LINE WITH THE § SCALE GIVES THE REQUIRED VALUE
OF 8 THAT IS TO BE USED IN CHART 3, STEP 4.

SACRARENTO, CALIFORNIN

; STRUCTURAL DESIGN NOMOG' *PH
FOR THERMAL CYCLING
CHART 2- TEMPERATURE DIFFERENTIAL




SCALE D

—
~
| 1 [ -g
L | |
i} l |
SCALE Wy
50 60 .70 80 90
4
REQUIRED PARAMETERS:
Wg = 3
Eq = MP 3 mISPA
e® — MPa THIS PAGE I'S BEST QUALITY PRACTICABLE mwcmgts
RESULT: FROM COPY FURNISHED TODDC e E
V = ___ MPq
DIRECTIONS:
1. ENTER AT GIVEN VALU
2. DRAW A VERTICAL LI
3. FROM THIS INTERSEC
SCHEMATIC EXAMPLE UNTIL IT INTERSECTS
c v

4, CONNECT THIS INTER
POINT "0" WITH A
SECTS THE STEM C

© IF THE VALUE Of
THEN STEP 4 MM
MARKED D+0 ON’

5.  FROM THE INTERSECT

We =
GIVEN VALUE ON THE

6. THIS INTERSECTION ¥
ANALYSES OF CHART




SCALE V
MPq

10.0

9.0

8.0

7.0

60

5.0

- a0
30

20

1S PAGE IS BEST QUALTTY ;
M COPY FURNISHED 10 e

bog ____—

NS :

AT GIVEN VALUE ON Wy SCALE.

A VERTICAL LINE UNTIL IT INTERSECTS THE CURVE.

THIS INTERSECTION DRAW A HORIZONTAL LINE PARALLEL TO THE GRID
IT INTERSECTS THE D SCALE.

CT THIS INTERSECTION ON THE D SCALE AND THE CENTER OF THE CROSS AT
"0" WITH A STRAIGHT LINE. EXTEND THIS STRAIGHT LINE UNTIL IT INTER-
S THE STEM C AT POINT c.

{IF THE VALUE OF D IS ZERO OR NEGLIGIBLE (CLOSE TO OR AT THE BASE LINE)
- THEN STEP 4 MAY BE BY-PASSED AND STEP 5 WOULD BEGIN AT THE POINT
- MARKED D0 ON THE STEM C

THE INTERSECTION POINT ¢ ON THE STEM C EXTENT ALINE THROUGH THE
VALUE ON THE Eg SCALE UNTIL IT INTERSECTS THE V SCALE.

 INTERSECTION PROVIDES THE VALUE OF V WHICH IS REQUIRED FOR THE
'YS!S OF CHART 4.NOTE THIS QUANTITY ON THAT CHART.

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TODDC e

SACRANENTO, CALIFORNIA
e

STRUCTURAL DESIGN NOMOGRAPH
FOR THERMAL CYCLING
CHART |- ELASTIC COMPONENT
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